

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON PURE MATHEMATICS

Speaker: Prof. Shuai GUOZoom Meeting :Beijing International Center for Mathematical Researchhttps://hkust.zoom.us/j/9584764665Passcode: BCOV		
Date	Time	Title
8 Nov 2022 (Tue)	8:15-9:45am	BCOV's Feynman rule for quintic threefold
<u>Abstract</u> We will introduce BCOV's B-model Feynman rule and its A-model approach. BCOV's Feynmann rule involves the notions of geometric quantization, normalize basis, propagators, etc. We explain where they comes from in the A-model theory, and thus naturally recover the B-models Feynmann graph.		
10 Nov 2022 (Thu)	8:15-9:45am	Conifold theory and gap conjecture
<u>Abstract</u> We introduce Huang-Klemm-Quackenbush's physics approach to the higher genus Gromov-Witten invariants, and the motivation to consider conifold theory for the quintic threefold. In physics, the conifold theory was originally introduced as the theory for a singular Landau-Ginzburg potential by Ghoshal and Vafa. We will give known mathematical example which has the gap phenomenon. In the end, we will explain that in the quintic case, the [0,1]-theory introduced in Lecture 1 contains the information which Huang-Klemm-Quackenbush have used and clarify its relation to the conifold gap conjecture.		
12 Nov 2022 (Sat)	2:30-4:00pm	Feynman rule for two-parameter model
<u>Abstract</u> In this lecture, we discuss the Calabi Yau threefold $X_{3.3}$ in P^2 x P^2. We hope to find the A-model counterpart of the normalize basis, propagators, polynomiality, etc. In this correspondence, the equation for the propagators is crucial, which was originally introduced by Alim-L"ange in physics. We hope to explain how it fit into our A-model framework.		

All are Welcome!